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Overview

The vacua of de Sitter space

The linear divergences of an interacting theory in
an a-vacuum

Taming the divergences of the a-vacuum

Truncated a-vacua and the CMB (next talk)



The geometry of de Sitter space

e The cosmological importance
of de Sitter space challenges
us to understand properly
quantum field theory in a de
Sitter background

* no global time-like Killing =
vector E
e Conformally flat coordinates: 5
=
2 _ — —
4< = dn (;Ix )%
N

What are the de Sitter
invariant vacua?

south pole




The vacua of de Sitter space

e One vacuum of de Sitter e thermal,

e becomes the flat vacuum at

Space has spec1al proper’aesz short distances, ...

Consider a free scalar field:

®(17,X) = (M)e &t +UE (me ™ =ac"
defines the vacuum: aEE [E)=0 U-(n)= @I’]?’IZH 2 (kn)
Mottola, PRD 31, 754 (1985)
e The a-vacuum Allen, PRD 32, 3136 (1985)
ior: E a* JEt _
*N“[aﬁ ° % ] N, = (1— e‘”“*) o
— _
d@flnes d Nnew vacuum: a.k ‘a> — O Rea O




UV divergences of an interacting
theory in the a-vacuum



Trouble with the a-vacua?

Perturbation theory in The approach:

the a-vacua: e First study the original a-

e Einhorn and Larsen found vacuum propagators
pinched singularities at one- * Examine the variants later
loop order
hep-th/0209159 - , 1 g ta”
e Banks and Mannelli showed G, (X, X)) U — i 1L
Z-1-1€ Z-1+1¢&
the a-vacua need non-local v
a a*
counterterms . e B e
Variants of the a-vacua can be de Sitter invariant distance
renormalized:

e Evolve matrix elements
e Place sources at x and x,

— Goldstein and Lowe S ..
— Suppose that the system is in an
hep-th/0302050, hep-th/0308135 g-vacuum at 1), and evolve

— Einhorn and Larsen forward
hep-th/0305056

— do not ask S-matrix questions



The fate of the a-vacuum in an
interacting theory

When we evolve the quantum theory with interactions,
— we discover a linear divergence in the one-loop corrections
— which cannot be cancelled by a mass counterterm

We use a quantization formalism in which the pinch
singularities do not appear

— cf. pinch singularities in thermal field theory

As a check we find that the theory is renormalizable
when

— a - —o (Euclidean vacuum) with interaction, or
— Q@ # -0 but with no interactions



The Schwinger-Keldysh formalism

e As the background
is time-dependent, * contour\ o)
it is dangerous to - - - >- - ————.g————>——————-.\‘
ask about the (. - o
: n=-—oo n= 0
asymptotic states \_ contour

* We use a quantization
procedure that allows a For the Closed Time Contour
time-dependent evolution
Schwinger, J. Math. Phys 2, 407 (1961)
Keldych, JETP 20, 1018 (1965) — use ®* and ® ~ vertices

e Double the vertices:

* Four propagators:
e Effectively double the field

++ QO+ Q-+ C--
content of the theory: - G, G, G, G
e Events on the + contour occur

H,(®) -~ H, (®)-H, () before those on the — contour



Divergences in the a-vacuum

* Loop propagator

* Power counting

e Phase interference

e Possible divergences in

— two-propagator loops
— three-propagator loops

a-Wightman function:

[" B[] G (.11.0) = IA P
i=1

n=2 linearly divergent
n=3 logarithmically divergent

_|N2 r’r]|+l

G, ¢ (M::15.0) I




Evolution of the number operator

P Bampe - Nc () =a (ma;'(n)
— the number of Euclidean K A &
particles in the a-vacuum induced by H,
— 1n o-state at ), E _ 2
a(n)|N: a =10 O(A
— @3 interaction < (’7)‘ S ('7)‘ (’7)> ()

e Evaluate to one-loop order

£=10,00"D -1 MP? - p - {FN°D)- 1 AD°

remove log divergence

<a (I’])‘ NE (n) ‘ a (I’])> = (9(/\0) + [ in Euclidean limit

— in truncated a-vacuum

+ +

\_/




Origin of the divergence

e Define an ‘initial occupation number’

< ‘ ak ‘a> 2 ™ = ng‘_ independent of k

e The a-dependent coefficient of the divergence is thus

N E _/\2 vV 1 J'n dn’

ak kn 641 kn, 20 n'

linearly
divergent

[(n +D(n] +1)n|pk‘ nﬁ’n”(n|‘;_k|+1)]

..‘ (I’] Nn ).‘ p-independent
>
at large p

If this were a thermal system
these n,” s would have a
Boltzmann suppression at large p

XSIn

However, an a-state is populated
to arbitrarily high momenta




Taming the a-vacuum



What went wrong with the a-vacuum?

¢ Since the Euclidean vacuum

matches with the flat vacuum,

it is reasonable to define the
usual time-ordering

e But is it the correct prescription

for the a-vacuum?
— antipodinal information

— interference

e (Can we generalize the idea of
time-ordering
— distinct from Euclidean case
— has agood a — — o limit

<a

*G)(t )G, (x x)

ot -1G,

no t, X X)
G, (X, X') /

=N [G (x,X") + €77 G, (X, X)

+e’G, @ xX') +e" G, (x’@)]




Propagation in the a-vacuum

e Define a new time-ordering

for the a-vacuum to remove (a|T, (D()D(x))|ar)
constructive interference in . o ,
products of propagators = =1A G (X X) 1B, Ge (X4, X)
=-iG, (X,X)
limA O9IF -1

limB, O1IF - 0

e Up to constants, we obtain an
essentially unique form
— contains two point sources

e Goldstein and Lowe, hep-th/0302050,
hep-th/0308135

e Einhorn and Larsen, hep-th/0305056



Time ordering in the a-vacuum

e Note that the time-ordering T, (P(X)D(x))
operator acts on the fields =0, (t,1) P(X)P(X')

e To disentangle the inherent +[o,(t t)] (X' )D(X)
correlated behavior at the Aa | , ,
antipodes, T, also depends + O, (14, 1) P(X,)P(X)
on the antipodes + [G)Q (t' L, )] D(X)D(X,)

e [tis useful to have 1
a path integral O, ()= 1= [Aa [G)(t —t') + e O(t' - t)]

definition for the
field theory -B,e’[o(t, ~t) +o(t'~t,)]|




The path integral: free theory

e Since the propagator contains <C¥ ‘Ta (CD(X)CD(X’))

two sources, let us define the P :
generating functional to have —IAGe (X, X) ~1B,Gg (X4, X)

two currents: =-iG. (x,X)

a)

Woa[J] _ J'@q)eiId4XH[£O+(an(x)+baJ(xA))dD(x)]

* Fixa,and b, by ditferen- s 1 s a
tiating with respect to the [ | dl(x)][ | dJ(X’)]WO [J]‘J:O
current — < a ‘Ta (q)( X) (D(X'))

o C lete th in W,?

omplete the square in W, A =+ B, =2ab,

a)




The path integral: local interactions

WA[J] = J‘@q)eij'd“xﬁ[f+(an(x)+baJ(xA))q>(x)]

LlP(X)] = £,[P(X)] + £ [P(x)]

e Express W9in terms of W,?
e Define a new functional G" — [ i o [ i 5
ooty X0 ) = |~ REN bl
derivative (% ) o) ——
0 & O
e An n-point Green’s function <N [ d*xy-g, EP%E\N ar 5
contains three types of € o [J]
propagators
— .90 |l—_o — i >F '
Alpha (both ex.ternal) [ | d](X)][ |W]WOC’ [J]‘J:O =—i Gg (X, X)
— Mixed (one point external) T
— Euclidean (internal) the theory is renormalizable




Local interactions: renormalizability

WA[J] = J‘@q)eij'd“xﬁ[f+(an(x)+baJ(xA))q>(x)]

£[o(x)] =19,P0 D - L mPe?
—p® - 3 6mMPD? — L Ad°

¢ Only Euclidean-vacuum e The loop produces a
propagators appear in the logarithmic divergence
loop which is cancelled by dm?

A |

Go M2 = -
/_\E 1672 ¢
[]

Grlr:ﬂxed \%/ Grlr:ﬂxed ' 5m2

finite
F




The path integral: antipodinal interactions

WA[J] = J‘@q)eij'd“xﬁ[f+(an(x)+baJ(xA))q>(x)]

£ = £[DX)] + £ [3,P(X) + b,d(x,)]

Local interactions are
renormalizable because [

only G, appears in loops | Ga (X, %) = [_' (%)

o )]

Was this necessary? [
[ d¥xy-g2 Fi——

Recall the original a- xN e Ef ‘D(X)RNO“[J]

vacuum

— Euclidean

25 WT3] _ ==iGE (xx)

il
— Double-source a 3 (x) J(X)
Antipodinal interactions




Antipodinal interactions: renormalizability

W] = [ope] ¢ el o o)
£ =19 ®3"® -1 m*®’ - p[a,P(X) + b,P(x,)]
-3am?[a, ®(x) +b,0(x,)]” ~ 1 A[a,®(x) + b,d(x,)]

e Only a-vacuum propagators e This loop produces a
appear in diagrams logarithmic divergence too
which is cancelled by dm?
F 2 Az As

G, om? =
/_\ 1677 €
+

[]
Gclr: G F Gclr: 5m2

finite




Further tests

e Although the propagator

contains a peculiar piece - N A 1
wh?ch depends on the G, (% X) = 872 Z(x,X) —1—-i¢
antipode, the theory is B 1

— causal + B

81 —Z(X,,X)+1-i€

— renormalizable in the
self-energy

e [tisnon-local, butin a

very constrained form
— global coordinates

— inflationary patch

e Do pathologies appear
elsewhere?

— e.g. vertex corrections?




e The a-vacuum

e An a-vacuum with
two sources

* Loops and trans-
planckian physics

Conclusions

The one loop corrections are linearly
divergent for the a-vacuum

These cannot be removed by a mass
counterterm

Euclidean vacuum loops can be
renormalized

Our definition for the a-propagator is
based on flat space intuition

Use renormalizability to guide us

Self-energy graphs are no longer linearly
divergent

— local and antipodinal interactions

Loop effects receive a A/H enhancement
— the next talk will describe this result



